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Abstract
In itinerant magnetically frustrated materials it is important to elucidate the
effect of the electronic correlation on the band structure and how it evolves
as a function of the electronic concentration n. In this work we address this
problem by considering the Hubbard model on a kagome lattice with a single
orbital per site, treating the local Coulomb repulsion U within the coherent
potential approximation. A metal–insulator transition occurs in the half-filled
band (n = 1) at Uc = 3.635t . A nearly flat band, characteristic of frustrated
lattices, is present at the top of the band structure. For concentrations n > 4/3,
the chemical potential may be located in this very narrow band, and one obtains
a significant enhancement of the γ coefficient of the specific heat depending on
the value of U . This effect can be at the origin of the heavy fermion behaviour
observed in LiV2O4.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The intense work on magnetically frustrated materials has mainly concentrated on localized
spin systems [1]. The study of itinerant frustrated systems is motivated by the heavy fermion
behaviour observed in the transition metal compounds Y(Sc)Mn2 [2] and LiV2O4 [3–5],
the discovery of superconductivity in cobaltates [6] and in KOs2O6 [7], or the metal–
insulator transition observed in pyrochlore iridates [8] or molybdates [9]. LiV2O4 is a
normal spinel, where V atoms form a pyrochlore lattice. It contains 1.5 3d electrons per V
atom distributed among three t2g orbitals and exhibits an enhanced specific heat coefficient
γ ≈ 420 mJ mol−1 K−2.

Previous studies of such systems using the Hubbard model have been performed
with the random phase approximation (RPA) [10–12], the fluctuation exchange (FLEX)
approximation [13] and quantum Monte Carlo calculations [14].

We consider here the Hubbard model on a kagome lattice with a single orbital per site. The
local Coulomb repulsion U is treated within the coherent potential approximation (CPA) [15].
We are mainly concerned with the effect of U and the electron concentration n upon the band
structure and thermodynamic properties.
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2. Model and approximation

The kagome lattice can be considered as a triangular lattice with three sites per unit cell forming
a triangular basis. The Hubbard Hamiltonian is written as

H = Ht + HU = −
∑

i jαβσ

tαβ

i j c†
iασ c jβσ + U

∑

iα

niα↑niα↓ (1)

where i, j denote sites of the underlying triangular lattice (with lattice parameter a = 1) and
α, β specify the atoms of the triangular basis. For the hopping matrix elements we take

tαβ

i j =
{

t, if (iα) and ( jβ) are nearest neighbours

0, otherwise.
(2)

The Green functions

Gαβ

i jσ = 〈〈ciασ ; c†
jβσ 〉〉 (3)

satisfy the equations of motion

ωGαβ

i jσ = δi jδαβ + 〈〈[ciασ ,H] ; c†
jβσ 〉〉. (4)

The higher-order Green functions generate an infinite chain of equations, which can be
decoupled by some truncation approximation. Here we adopt the CPA decoupling [15], which
yields an atomic-like expansion

Gαβ

i jσ = gσ
iα

{
δi jδαβ −

∑

kγ

tαγ

ik Gγβ

k jσ

}
. (5)

The self-consistent renormalized locator is given by

gσ (ω) = ω − U + U 〈niασ 〉 − λσ

ω(ω − U − λσ ) + U 〈niασ 〉λσ
(6)

where

λσ (ω) = 1/gσ − 1/Gαα
iiσ . (7)

Equation (5) can be formally solved by Fourier transformation. In matrix form

Gσ (q) = [
1 − gσ ε(q)

]−1
gσ (8)

where gσ = gσ (ω)1. For the kagome lattice,

ε(q) = −2t

⎛
⎜⎝

0 cos (
qx −qy

√
3

4 ) cos (
qx +qy

√
3

4 )

cos (
qx −qy

√
3

4 ) 0 cos (
qx

2 )

cos (
qx +qy

√
3

4 ) cos (
qx

2 ) 0

⎞
⎟⎠ (9)

and we obtain

Gαα
σ (q) = g/3

1 − 2tg
+ 2g(1 + tg)/3

1 + 2tg − 2t2g2 + tg2ε0(q)
(10)

where ε0(q) is the dispersion relation of the triangular lattice.
The lattice Green functions are obtained by integration over q which can be converted into

a single integral in energy

Gαα
iiσ =

∫
dE ρ0(E)Gαα

σ (E) (11)

where ρ0(E) is the bare density of states (DOS) of the triangular lattice.
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The chemical potential μ has to be fixed self-consistently for a given electron concentration

n =
∑

σ

〈niασ 〉 = 2
∫

dω f (ω)ρσ
iα(ω), (12)

where ρσ
iα(ω) is the local DOS of the kagome lattice and f (ω) is the Fermi function.

The thermodynamic properties can be addressed through the internal energy per site
E = 〈H〉/N . The gamma coefficient of the specific heat c is given by

γ (T ) = c(T )/T = (dE/dT ) /T . (13)

Observing that∑

iσ

c†
iσ [ciασ ,H] = 2H − Ht (14)

and using equation (4), the internal energy can be evaluated by

E =
∫

dω f (ω)ωρσ (ω) − 4t〈c†
iασ c jβσ 〉nn (15)

which involves the nearest-neighbour average
〈
c†

iσ c jσ

〉

nn
=

∫
dω f (ω)ρσ

nn(ω) (16)

where

ρσ
nn(ω) = − 1

π
Im

(
Gαβ

i jσ (ω + iδ)
)

nn
. (17)

The Green function in the last equation is related to the local Green function through
equation (5).

3. Results and discussion

Figure 1 shows the evolution of the band structure with increasing U close to the metal–
insulator transition (MIT) at half-filling (n = 1). For U > Uc = 3.635t the Hubbard bands are
split and the chemical potential μ is located inside the Hubbard gap. Thin lines correspond to
the spectral densities ρσ

nn(ω) defined in equation (17).
Figure 2 illustrates the transfer of spectral weight from the lower to the upper Hubbard

band with increasing electron concentration n for fixed U = 5t . In the empty band limit, the
lower Hubbard band looks like the uncorrelated DOS. In the opposite limit of large n, it is the
upper Hubbard band that acquires a similar shape. In the latter case, the chemical potential is
located close to the nearly flat band at the top of the DOS. For intermediate values of n and U ,
the peak in the DOS is broadened.

The MIT can be followed from the curves of the chemical potential as a function of
concentration for fixed values of U . For U > Uc these curves of μ(T ) exhibit a jump at
exactly n = 1, indicating that the weights of the Hubbard bands are correctly evaluated in the
CPA.

Figure 3 shows γ (T ) for fixed values of U and n. Thin lines indicate the integrated entropy.
We see that γ (T ) may be a non-monotonic function of temperature. Figure 4 describes the
enhancement of γ as a function of U for a large value of n when the chemical potential
approaches the very narrow peak in the DOS. For n close to 4/3, there is a pronounced
maximum at a small value of U , indicating the possibility of a strong enhancement of γ .
For n close to 5/3, the enhancement is even larger and is observed for all values of U with
a divergence in the U = 0 limit.
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Figure 1. Densities of states ρ(ω) and ρnn(ω) for n = 1 and different values of the correlation U .
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Figure 2. Densities of states for U = 5t and different concentrations n. Arrows indicate the position
of the chemical potential.

4. Conclusion

We have studied the effect of the correlation U and band filling n on the DOS and specific heat
of the Hubbard model on a kagome lattice. The adopted CPA approximation is the simplest
decoupling which provides a qualitatively correct description of the MIT. The renormalization
of the self-energy is taken into account via equation (7) and it is fundamental for yielding
the correct weights of the Hubbard bands when asymmetric DOS are involved. Away from
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Figure 3. Coefficient γ as a function of temperature for fixed n and U . Thin lines are the integrated
entropy.
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Figure 4. Coefficient γ as a function of U for several concentrations n in the low temperature limit.

half-filling, the CPA takes into account the transfer of spectral weight between the Hubbard
bands, interpolating properly between the empty and full band limits. A nearly flat band
is present at the top of the band structure, originating from the completely flat band in the
uncorrelated DOS of the kagome lattice. For concentrations n > 4/3, the chemical potential
may be located in this very narrow band, and depending on the value of U , one obtains a
significant enhancement of the γ coefficient of the specific heat. Projecting this result to the
pyrochlore lattice, which exhibits a doubly degenerate flat band, a similar situation could be
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found for moderate values of n, in correspondence to what is found in real compounds. In
order to describe LiV2O4, the model should be extended to include degenerate 3d bands.
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